
Decentralized Finance

Instructors: Dan Boneh, Arthur Gervais, Andrew Miller, Christine Parlour, Dawn Song

DeFi Security

DeFi Security Affects Multiple Layer

Network Layer

Blockchain Layer

Smart contract Layer

DeFi Protocol +
Application Layer

Third party Layer

Network Services

DNS, IP, BGP

Network Protocols

P2P overlay, Peer discovery, Data propagation

Consensus

Proof-of-Work, Proof-of-Stake

Incentive Protocol

Block reward, MEV reward, TX fee

Data

Block, Transaction, Contract

Virtual Machine

Contract execution, State transition

Asset

Fungible, Non-Fungible

Atomic Composable DeFi

Exchange, Loan, Mixer, Liquidity incentive

UI

Wallet, Website, APIs

Other

Oracle data feed, Centralized governance

I can attack
any layer!

2

Network Layer Security

https://defi-learning.org

Network Layer

4

▪ Why Network Layer?
▪ Information dissemination and propagation.

▪ Latency matters!

▪ How many nodes?
▪ Bitcoin: about 10’000 reachable full nodes (TCP/8333)

▪ Ethereum:

▪ Dogecoin:

▪ What type of nodes exist?
▪ Full nodes

▪ Light nodes

Exchange Transaction Propagation

5

Exchange Transaction Propagation

6

Exchange Transaction Propagation

7

Exchange Transaction Propagation

8

Network Layer – Spy Node

9

Network Layer – Spy Node

10

Front-running

11

Back-running

12

Eclipse Attacks

https://defi-learning.org

Eclipse attacks
Heilman et al., Usenix ’15

Denial of service
Double spending

Eclipse Attacks

14

Request timeouts

15

Block timeout: 20 minutes
Transaction timeout: 2 minutes

Victim

Security Implications

▪ Adversary
▪ Blinds victim from blocks and transaction > 20 min

▪ Experimental validation

▪ Impact
▪ Double spend transactions

▪ Aggravated selfish mining

▪ Network wide Denial of Service

▪ Mitigations
▪ Hardening measures

▪ Estimate waiting time for secure transactions 16

1. Must be first peer to advertise Transaction/Block

Eclipse Requirements

17

Ok,
new Hash,
I wait

2. Victim should wait
• Block timeout: 20 minutes
• Transaction timeout: 2 minutes

Being First on the Network Layer

18

Zurich

California

Frankfurt

Singapore

Hash

Hash

Hash

Hash

Bitcoin Network

Connections of Adversary 40 80 200 800
Connections of Victim 40 40 40 40

Average success in being first 0.44±
0.14

0.57±
0.20

0.80±
0.14

0.89±
0.07

FIFO queue

Network Layer Timeouts

19

▪ Transactions
▪ After 2 minutes request from other peer (FIFO)

▪ Blocks (older Bitcoin version)
▪ After 20 minutes disconnect and do nothing

▪ If received header, disconnect and request block
from another peer

Blockchain Layer Security

https://defi-learning.org

Why Blockchain Layer?

▪ Double-Spending

▪ Selfish Mining

▪ Undercutting

▪ Bribery

21

Double-Spending

22

Increasing Mining Advantage with an Eclipse

▪ Idea from Eyal et. al:
▪ Instead of publishing, keep a block private

▪ Other miners will perform wasteful computations

: hashing power of adversary

: propagation parameter 23

Increasing Mining Advantage with an Eclipse

P: probability to eclipse a block to a miner 24

Increasing Mining Advantage with an Eclipse

25

Smart Contract Layer Security

https://defi-learning.org

Smart Contract Layer

contract Wallet {
 uint balance = 10;

 function withdraw(){
 if(balance > 0)
msg.sender.call.value(balance)();
 balance = 0;
} }

Transfer $$$
to the caller

▪ Programs that handle money
▪ Executed on a blockchain, written in a high-level

language, compiled to VM code

▪ No patching after release

▪ What can go wrong?
27

The DAO attack

28

Security Bug #1: Reentrancy

Wallet Contract

uint balance = 10;

function withdraw(){
 if(balance > 0)
 msg.sender.call.value(balance)();
 balance = 0;
}

User Contract

function moveBalance() {
 wallet.withdraw();
}
...

withdraw()

function () payable {
 // log payment
}

withdraw()

no transfer

Can the user contract withdraw more than 10 ether?

calls the default
“payable” function

balance is zeroed
after ether transfer

Later
…

10 ether

29

Wallet Contract

uint balance = 10;

function withdraw(){
 if(balance > 0)
 msg.sender.call.value(balance)();
 balance = 0;
}

User Contract

function moveBalance() {
 wallet.withdraw();
}
...
function () payable {
 wallet.withdraw();
}

An adversary stole 3.6M Ether !

balance is zeroed
after ether transfer

Calls withdraw()
before balance
is set to 0

Security Bug #1: Reentrancy

30

address owner = ...;

function initWallet(address _owner) {
 owner = _owner;
}

function withdraw(uint amount) {
 if (msg.sender == owner) {
 owner.send(amount);
 }
}

Wallet Contract

Any user may
change the wallet’s
owner

Only owner can
send ether

An attacker used a similar bug to steal $32M

Security Bug #2: Unprivileged write to storage

31

Smart Contract Bug Exercise 1

32

contract Example {

 address public owner;
 string private mySecret;

 constructor {
 owner = msg.sender;
 }

 function setSecret(string _secret) public {
 require(msg.sender == owner);
 mySecret = _secret;
 }

 function getSecret() public returns (string) {
 require(msg.sender == owner);
 return mySecret;
 }
}

Any variable is readable on the
public Ethereum blockchain.

Declaring a variable private only
restricts the automatic creation of
getter for that variable, but does

not hide it.

Hint: who would be able to read mySecret?

Smart Contract Bug Exercise 2

33

contract Vulnerable {

 mapping(address => bool) authorized;
 mapping(address => uint) balances;

 function refund(uint amount) public {
 require(authorized[msg.sender]);
 require(amount <= balances[msg.sender]);

 msg.sender.call.value(amount)("");
 balances[msg.sender] -= amount;
 }
}

The code is vulnerable to a
reentrancy attack.

The balance of the msg.sender is
only updated after a transfer is
made. If the msg.sender is a
contract and has a fallback

function that calls into the contract
again, the msg.sender can deplete

the contract of the funds.

Hint: who can be msg.sender?

Smart Contract Bug Exercise 2

34

contract Vulnerable {
 … // vulnerable as the previous example
}

contract Exploit {

 Vulnerable v;

 function register(address contract) public {
 v = Vulnerable(contract);
 }

 function exploit() public {
 // your code here
 }

 // your code here
}

Hint: check the previous example

Smart Contract Bug Exercise 2 - Solution

35

contract Vulnerable {
 … // vulnerable as the previous example
}

contract Exploit {

 Vulnerable v;

 function register(address contract) public {
 v = Vulnerable(contract);
 }

 function exploit() public {
 v.refund(1);
 }

 function () public {
 v.refund(1);
 }
}

Reentrant method calls (e.g., DAO bug)

Insecure coding, such as unprivileged writes (e.g., Multisig Parity bug)

Unexpected ether
flows

Use of unsafe inputs (e.g., reflection, hashing, …)

More smart contract security bugs

36

More smart contract security bugs

37
https://consensys.github.io/smart-contract-best-practices/known_attacks/

All possible
contract
behaviors Security

Bugs

Problem: Cannot enumerate all possible contract behaviors…

Automated security analysis

38

Testing Dynamic analysis
Symbolic execution

Static analysis
Formal verification

Easy to implement, but
very limited guarantees

Better than testing, but
can still miss vulnerabilities

Strong guarantees, but many
false positives

Automated security analysis – Existing solutions

39

DeFi Flash Loan „Attacks“

https://defi-learning.org

+

Flash Loan Attacks

41

Input: 130 USD gas
Output: 350,000 USD
Optimal: 830,000 USD

bZx - Pump and Arbitrage Attack – February 2020

42

bZx
7,500 ETH Adversary

7,500 ETH

bZx – Oracle manipulation – February 2020

43

bZx

Adversary

6,960 ETH
92,419.70 sUSD

Uniswap

879.76 ETH
243,441.12 sUSD

1,419.76 ETH
151,021.42 sUSD

540 ETH

92,419.70 sUSD

Exchange rate: (step 2) 171.15 sUSD/ETH

bZx – Oracle manipulation – February 2020

44

bZx

Adversary

6,960 ETH
92,419.70 sUSD

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

540 ETH

92,419.70 sUSD

Exchange rate: (step 2) 171.15 sUSD/ETH

bZx – Oracle manipulation – February 2020

45

46

bZx

Adversary

6,600 ETH
156,003.79 sUSD

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

Kyber Reserve

0.91 ETH
107,901.90 sUSD

360.91 ETH
44,317.80 sUSD

360 ETH

63,584.09 sUSD

Exchange rate: (step 2) 171.15 sUSD/ETH; (step 3) 176.62 sUSD/ETH

bZx – Oracle manipulation – February 2020

47

bZx

Adversary

6,600 ETH
156,003.79 sUSD

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

Kyber Reserve

360.91 ETH
44,317.80 sUSD

Price:
108.44 sUSD/ETH

360 ETH

63,584.09 sUSD

Exchange rate: (step 2) 171.15 sUSD/ETH; (step 3) 176.62 sUSD/ETH

bZx – Oracle manipulation – February 2020

48

bZx

Adversary

3,082.14 ETH
1,099,841.39 sUSD

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

Kyber Reserve

360.91 ETH
44,317.80 sUSD

Price:
108.44 sUSD/ETH

Synthetix
3,517.86 ETH

943,837.59 sUSD

Exchange rate: (step 2) 171.15 sUSD/ETH; (step 3) 176.62 sUSD/ETH; (step 4) 268.30 sUSD/ETH

bZx – Oracle manipulation – February 2020

49

bZx
Adversary

9,881.41 ETH

Uniswap

1,419.76 ETH
151,021.42 sUSD

Price:
106.05 sUSD/ETH

Kyber Reserve

360.91 ETH
44,317.80 sUSD

Price:
108.44 sUSD/ETH

Synthetix

1,099,841.39
sUSD

6,799.27
ETH

bZx – Oracle manipulation – February 2020

Constrained Optimization Framework

50

Optimizing the bZx attack 2

▪ Borrow 𝑋 ETH (bZx flash loan)
▪ Convert 𝑝1 ETH to 𝑓1(𝑝1) sUSD (Uniswap)

▪ Convert 𝑝2 ETH to 𝑓2(𝑝2) sUSD (Kyber)

▪ Deposit 𝑝3 ETH for 𝑓3(𝑝3) sUSD (Synthetix)

▪ Collateralize 𝑧 sUSD to borrow 𝑔(𝑧) ETH

▪ z=𝑓1(𝑝1)+𝑓2(𝑝2)+𝑓3(𝑝3)

▪ Repay 𝑋 ETH (bZx flash loan)

▪ Objective: 𝑜=𝑔(𝑓1(𝑝1)+𝑓2(𝑝2)+𝑓3(𝑝3))−𝑋
▪ s.t. 𝑝1+𝑝2+𝑝3<𝑋 51

Optimizing the bZx attack 2

▪ Sequential Least Squares Programming (SLSQP)
▪ SciPy

▪ Ubuntu 18.04.2, 16 CPU cores, 32 GB RAM

▪ Validation by concrete execution
▪ Execution on the real blockchain state

52

Sandwich Attacks

https://defi-learning.org

Asset X
quantity

Asset Y
quantity

constant

AMM – Automated Market Maker

54

Sandwich Attack

55

AMM – Constant product formula

56

AMM – Constant product formula

57

Expected Slippage

58

The expected increase or decrease in price
based on the trading volume and available
liquidity.

Unexpected Slippage -> Worse Execution Price

59

Unexpected Slippage -> Better Execution Price

60

Slippage Protection

61

Configures a slippage protection threshold to prevent
unacceptable slippage

Slippage Protection

62

Transaction fails when crossing the slippage limit.

Sandwich Attack Against Taker

63

Idea: Maximise the victim’s slippage

Network layer + DeFi protocol layer

64

Sandwich attack profitability

65

Multiple Adversaries

66

Break-even of the attacker becomes harder to attain

Advanced Sandwich Attack

67

Blockchain Extractable Value

https://defi-learning.org

What is Blockchain (or Miner) Extractable Value?

69

Price of collateral drops below health factor

Liquidation!

Who will liquidate?

How much MEV?

70

How much MEV? – Sandwich Attacks

71

How much MEV? – Liquidations

72

How much MEV? – Arbitrage

73

Transaction Replay Attacks

https://defi-learning.org

Generalized Front-Running

75

▪ “Copy Cat” or “Replay”
▪ Observe transaction on the network layer

▪ Replace certain data, sign, and broadcast copy

▪ Potential Profit
▪ 35M USD over 32 months

▪ 188,365 profitable transactions (0.02%)

▪ Real-time algorithm (0.18s ± 0.29)

Generalized Front-Running Algorithm & Results

76

BEV Forking and Chain
Reorganisation

https://defi-learning.org

The dangers of naively maximizing MEV

B1

B2

C2

MEV

MEV

Malicious
Miner

Honest
Miner

78

The dangers of naively maximizing MEV

B1

B2

C2

MEV

MEV

🤔

B3
Honest
Miner

Malicious
Miner

79

The dangers of naively maximizing MEV

B1

B2

C3

MEV

B3

Malicious
Miner

Honest
Miner

Case 1:

Case 1:

Malicious miner forfeits MEV opportunity

80

The dangers of naively maximizing MEV

B1

B2

C2

MEV

MEV

B3
Honest
Miner

Malicious
Miner

Case 2:

Case 1:

Malicious miner forfeits MEV opportunity

Case 2:

Keeps mining block C2

81

The dangers of naively maximizing MEV

B1

B2

C2

MEV

MEV

Case 2:

Case 1:

Malicious miner forfeits MEV opportunity

Case 2:

Keeps mining block C2
C3

82

The dangers of naively maximizing MEV

B1

B2

C2

MEV

MEV

B4

Honest
Miner

Malicious
Miner

Case 2:

Case 1:

Malicious miner forfeits MEV opportunity

Case 2:

Keeps mining on block C2

→ Waste computational power
→ Increase stale block rates and risks for:

● Double spending
● Selfish mining

C3 C4

83

Markov Decision Process (MDP)

84

Proof of Work
Blockchain

Consensus Layer
Parameters

Network Layer
Parameters

Parameter Stale Block Rate
Markov
Decision
Process

A
ttacks

Markov Decision Process (MDP)

8
5

B
0

B
1

State: (3, 1)

TX pays
vendor

Honest
chain

Attacker
chain

Override
Action

TX pays
adversary

+
double-spendin

g value

85

Reducing MEV is the key to security (example)

+ ==

10%
miner

MEV, 4x average
block reward

“On the just-in-time discovery of profit-generating transactions in defi protocols.” peer-reviewed at S&P’21
86

https://arxiv.org/pdf/2103.02228.pdf

Reducing MEV is the key to security (example)

874x

��
87

BEV Relayer &
How to Mitigate BEV?

https://defi-learning.org

BEV Relay Architecture

89

BEV Relayer Concerns

90

▪ BEV provably incentivises miners to fork (cf. S&P’21)

▪ BEV relayer centralise the P2P Network

▪ The relayer may resell/profit from searcher strategies

▪ The relay system doesn’t necessarily reduce P2P overhead

▪ A for profit company distributes the geth client to >50% of the
miners

▪ Innocent users are being stolen from systematically

Anti-MEV Solution Space

91

▪ Fair-Ordering on the Blockchain Layer
▪ e.g., Aequitas Protocol Family

▪ Fixing MEV of existing dApps
▪ Merging AMM DEX into one
▪ On-chain aggregators such as A2MM (see DEX lecture)

▪ Designing MEV-Mindful dApps
▪ Avoiding MEV by design

▪ e.g., a price oracle update immediate performs a liquidation

▪ Might not fix cross-chain MEV..

Application-Specific MEV Mitigation

92

Swap X for Y

Price of X declines

Market X, Y

Market X, Y

Swap X for Y

Swap Y for X

▪ Causes
▪ Back-run Flooding

▪ Network Congestions

▪ Price Gas Auctions

▪ Transaction Fee Increase

▪ The user forgoes an
arbitrage opportunity.

Application-Specific MEV Mitigation

93

Market X, Y

Market X, Y

Swap X for Y

Swap X for Y

Swap X for Y

��

Optimal
Routing +
Arbitrage

▪ Cons
▪ Higher Gas Fees

▪ Pros
▪ Better ex rate

▪ Arbitrage profit

▪ MEV reduction

▪ Healthier chain

